蒲公英(分块)
Acwing249蒲公英
[洛谷]([Violet]蒲公英 - 洛谷)
[Acwing(数据较强)](249. 蒲公英 - AcWing题库)
前言
“好诗意的题目啊......
那就用很诗意的代码写吧”
思路
首先, 这题是给你 \(l, r\) 的限制目的是强制在线,所以莫队啥的不能用。
由于不满足“区间可加性”(已知\([l, r] \cup[r+1,k]\) 的众数,不能得出 \([l, k]\) 的众数), 所以树状数组/线段树就很难维护。
考虑分块,首先离散。 设块的长度为 \(T\) , 则有 \(n / T\) 块, 然后预处理第 \(i\) 到 \(j\) 块的众数以及数的出现次数, 这段时间复杂度 \(O(NT^2)\)。 之后两段暴力维护, \(O(N/T)\)
总的时间复杂度 \(O(NT^2 + MN/T)\)
所以如果 \(T=\sqrt{N}\) 时间复杂度就为 \(O(N\sqrt{N})\) ( \(N,M\) 同阶)
#include <bits/stdc++.h>
#define for_(i,a,b) for (int i = (a); i < (b); i++)
#define rep_(i,a,b) for (int i = (a); i <= (b); i++)
#define _Pos(i, j) (((i)-1)*cnt+(j))
using namespace std;
const int maxn = 4e5 + 10, mod = 1e9 + 7;// mod = 1949777;
const double EPS = 1e-3;
int n, m, t, cnt;
int a[maxn], id[maxn], l[maxn], r[maxn], b[maxn], s[maxn];
void solve() {
}
signed main() {
#ifdef LOCAL
freopen("w.in", "r", stdin);
freopen("w.ans", "w", stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n >> m;
//
while (t * t * t < n)
t++;
t--; //
t = n / t; //the lenth of a bar
//
rep_(i, 1, n) {
cin >> a[i];
b[i] = a[i];
}
sort(b + 1, b + 1 + n);
int len = unique(b + 1, b + 1 + n) - b - 1;
rep_(i, 1, n) {
a[i] = lower_bound(b + 1, b + 1 + len, a[i]) - b;
}
//
for (int i = 1; i <= n / t; i++) {
l[i] = (i - 1) * t + 1;
r[i] = i * t;
}
cnt = n / t;
if (r[cnt] < n) {
l[cnt + 1] = r[cnt] + 1;
r[cnt + 1] = n;
cnt++;
}
for (int i = 1; i <= cnt; i++) {
for (int j = l[i]; j <= r[i]; j++) {
id[j] = i;
}
}
vector<vector<int>> v(cnt * cnt + 1, vector<int>(n, 0));
//
for (int i = 1; i <= cnt; i++) {
for (int j = i; j <= cnt; j++) {
for (int k = l[i]; k <= r[j]; k++) {
v[_Pos(i, j)][a[k]]++;
}
int mx = 0, _S = 0;
for (int k = 1; k <= n; k++) {
if (mx < v[_Pos(i, j)][k] || mx == v[_Pos(i, j)][k] && _S > k) {
mx = v[_Pos(i, j)][k];
_S = k;
}
}
s[_Pos(i, j)] = _S;
}
}
//
vector<int> N(n + 1, 0);
int _X = 0;
for (int i = 1, L, R; i <= m; i++) {
cin >> L >> R;
L = (L + _X - 1) % n + 1, R = (R + _X - 1) % n + 1;
if (L > R)
swap(L, R);
int mx = 0, _S = 0;
if (id[L] == id[R]) {
for (int j = L; j <= R; j++) {
N[a[j]]++;
if (mx < N[a[j]] || mx == N[a[j]] && _S > a[j])
mx = N[a[j]], _S = a[j];
}
} else {
// Left
for (int j = L; id[j] == id[L]; j++) {
N[a[j]]++;
if (N[a[j]] == 1) {
if (id[L] + 1 < id[R]) {
N[a[j]] += v[_Pos(id[L] + 1, id[R] - 1)][a[j]];
}
}
if (mx < N[a[j]] || mx == N[a[j]] && _S > a[j])
mx = N[a[j]], _S = a[j];
}
// Right
for (int j = R; id[j] == id[R]; j--) {
N[a[j]]++;
if (N[a[j]] == 1) {
if (id[L] + 1 < id[R]) {
N[a[j]] += v[_Pos(id[L] + 1, id[R] - 1)][a[j]];
}
}
if (mx < N[a[j]] || mx == N[a[j]] && _S > a[j])
mx = N[a[j]], _S = a[j];
}
// Mid
if (id[L] + 1 < id[R] && N[s[_Pos(id[L] + 1, id[R] - 1)]] == 0) {
int _O = s[_Pos(id[L] + 1, id[R] - 1)];
int Tmp = v[_Pos(id[L] + 1, id[R] - 1)][_O];
if (mx < Tmp || mx == Tmp && _S > _O) {
mx = Tmp;
_S = _O;
}
}
}
_X = b[_S];
cout << _X << endl;
// clear
for (int j = L; id[j] == id[L]; j++)
N[a[j]] = 0;
for (int j = R; id[j] == id[R]; j--)
N[a[j]] = 0;
}
return 0;
}